Preconditioning of linear least-squares problems by identifying basic variables
نویسندگان
چکیده
The preconditioning of linear least-squares problems is a hard task. The linear model underpinning least-squares problems, that is the overdetermined matrix defining it, does not have the properties of differential problems that make standard preconditioners effective. Incomplete Cholesky techniques applied to the normal equations do not produce a well conditioned problem. We attempt to remove the ill-conditioning by identifying a subset of rows and columns in the overdetermined matrix defining the linear model that identifies the “best” conditioned basic variables matrix. We then compute a symmetric quasi-definite linear system having a condition number depending solely on the geometry of the non-basic variables and that is independent of the original condition number. We illustrate the performance of our approach on some standard test problems and show it is competitive with other approaches.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملPreconditioned Iterative Methods for Solving Linear Least Squares Problems
New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU fa...
متن کاملPreconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation
The standard approach to the solution of the radial basis function interpolation problem has been recognized as an ill-conditioned problem for many years. This is especially true when infinitely smooth basic functions such as multiquadrics or Gaussians are used with extreme values of their associated shape parameters. Various approaches have been described to deal with this phenomenon. These te...
متن کاملIterative Solution of Toeplitz Systems by Preconditioning with the Discrete Sine Transform
Solving linear systems or least-squares problems related to Toeplitz matrices is often required in the context of signal and image processing; Conjugate-Gradient-like methods are well-suited for solving such problems. The recent preconditioning technique involving the discrete sine transform is presented: convergence properties are reported and suitable generalizations to block matrices, nonsym...
متن کاملApproximate Generalized Inverse Preconditioning Methods for Least Squares Problems
iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minim...
متن کامل